• Home
  • >
  • DevOps News
  • >
  • Creating Machine Learning Models Takes too Much Time – InApps 2022

Creating Machine Learning Models Takes too Much Time – InApps is an article under the topic Devops Many of you are most interested in today !! Today, let’s InApps.net learn Creating Machine Learning Models Takes too Much Time – InApps in today’s post !

Read more about Creating Machine Learning Models Takes too Much Time – InApps at Wikipedia



You can find content about Creating Machine Learning Models Takes too Much Time – InApps from the Wikipedia website

What’s the most challenging stage of the machine learning (ML) lifecycle? Data gathering and cleaning has traditionally been the most time-consuming aspect of data scientists’ and analytics practitioners’ jobs. But as solutions have popped up to address this issue, the bottleneck has moved to creating and deploying ML models.

The jury is still out on how many stages there are in the standard ML lifecycle, but for sure getting started is not a problem. Executives are throwing money at projects. Although a lot of projects have failed at the proof-of-concept phase, others have found success in identifying real business goals and establishing data science teams.

Actually building and evaluating machine learning models is the core stage of the ML lifecycle. But according to Algorithmia’s “2021 Enterprise Trends in Machine Learning,” once a use case is actually defined, it takes 66% of organizations more than a month to develop an ML model. For 64% of organizations, it takes at least another month to deploy that model. Per the report, most data scientists spend at least 25% of their time deploying models. The machine learning engineers described in these charts are often deploying into test environments as well as into production. When assessing additional studies it is important to realize that respondents may not understand the distinction between these two types of deployments.

Read More:   Update What Machine Learning Can and Can’t Do

Once a model is served into production, it is monitored in regards to DevOps and IT-related performance metrics, but also to make sure its accuracy doesn’t degrade over time. Retraining models, audits, tracking proper security and governance and live A/B tests are all iterative steps that can feed back into earlier stages of the lifecycle.

At the end of the day, data scientists analyze and understand data to influence decisions. In recent years, they have been less likely to “waste” their time acquiring or cleaning data, but have become more proficient at writing their own software to automate deployments and workflow. If ML platforms and popular projects can abstract away some of this work, then data scientists and machine learning engineers can spend more time creating value for their organizations.

Source: Algorithmia’s “2021 Enterprise Trends in Machine Learning”.

 

Source: Algorithmia’s “2021 Enterprise Trends in Machine Learning”.

IT governance, security, and auditability were the top challenges associated with deploying machine learning models according to Algorithmia’s “2021 Enterprise Trends in Machine Learning”.

Feature image via Pixabay.



Source: InApps.net

Rate this post
As a Senior Tech Enthusiast, I bring a decade of experience to the realm of tech writing, blending deep industry knowledge with a passion for storytelling. With expertise in software development to emerging tech trends like AI and IoT—my articles not only inform but also inspire. My journey in tech writing has been marked by a commitment to accuracy, clarity, and engaging storytelling, making me a trusted voice in the tech community.

Let’s create the next big thing together!

Coming together is a beginning. Keeping together is progress. Working together is success.

Let’s talk

Get a custom Proposal

Please fill in your information and your need to get a suitable solution.

    You need to enter your email to download

      Success. Downloading...